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ABSTRACT 

 

The complexity of a model can have important implications for its costs of development, 

ease of use, and the reliability of its output.  However, there is no standard definition of 

model complexity in the literature and little acknowledgement of its many possible 

forms.  Furthermore, it is difficult to determine the appropriate levels of complexity for a 

particular model because there are few quantitative studies of the effects of model 

complexity on results.  In this paper, an attempt is made to classify various types of 

model complexity and to determine an appropriate indicator for quantifying each type of 

complexity.  Using three of these indicators, network flow models of Northern 

California’s water system are formulated and compared at six levels of spatial 

aggregation.  The results show that some spatial aggregration is possible with little 

change in the overall results but that high levels of aggregation can cause significant 

errors.  In addition, changes in complexity are shown to have more significant effects at 

the local level.  Additional research is needed to more completely understand the effects 

of model complexity on results. 
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INTRODUCTION 

“One should not increase, beyond what is necessary, the number of entities required to 
explain anything.”  - William of Occam (1285-1349) 

 
Recent advances in computer technology and in data management and acquisition 

have made possible the development of increasingly complex models.  The high level of 

complexity incorporated in many recent models has renewed a debate over the merits of 

simple versus complex models.  Advocates of complex models (Nihoul 1994) argue that 

they are more reliable, represent the system more comprehensively, and are less likely to 

be used inappropriately.  However, simpler models are said to be less time-consuming 

and costly to develop, to require less data, and to produce results that are easier to 

understand and interpret (Wood 1989).  The most common sentiment (Jackson 1975; 

Palmer and Cohan 1986; BDMF 2000) seems to be that modelers should attempt to 

develop models that contain just enough complexity to accurately accomplish the project 

objectives, but no more. 

These arguments underscore the importance of selecting an appropriate level of 

complexity for each model.  The level of complexity incorporated into a model has 

important implications for the costs and availability of input and calibration data, for 

running the model (i.e., run time), and for interpreting model output.  Increased model 

complexity also is presumed to improve the reliability of the results.  However, while it is 

relatively easy to measure the costs of increased complexity, very little data exists to 

evaluate the expected benefits of incorporating additional complexity into a model. 

The purpose of this study is to evaluate the effect of varying spatial complexity on 

the results of CALVIN, an economically based network flow optimization model of 

California’s water supply system (Howitt et al. 1999).  The paper begins with a review of 
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previous studies of the effects of complexity on model results, followed by a definitional 

discussion of model complexity.  Next, the formulation of network flow optimization 

models of Northern California at six different levels of spatial complexity is described 

and the results of these models are presented and discussed.  Finally, some conclusions 

are made on the impact of model complexity on results and their interpretation. 

STUDIES OF MODEL COMPLEXITY 

Considering the perceived importance of model complexity, relatively few studies 

compare the results of models at different levels of complexity.  This is especially true for 

reservoir systems models.  The only study found which directly compared the results of a 

simpler reservoir model with those of a more complex one is by Palmer and Cohan 

(1986), who modeled the hydropower system of the Columbia River using both a single 

reservoir and a multi-reservoir model.  They found that the simple model returned 

monthly hydropower production values 7-8% higher than those of the more complex 

model from July to December and 3-4% lower from January to June, resulting in a net 

annual difference of only about 1%. 

 A common technique for modeling multi-reservoir hydropower systems is to use 

aggregation methods to simplify the solution of a stochastic dynamic program.  The 

simplification of the problem is accomplished either by solving each of the reservoirs 

sequentially while aggregating the potential energies of the remaining reservoirs into one 

or two composite reservoirs (Turgeon 1981; Archibald et al. 1997) or by aggregating all 

reservoirs into a single reservoir and then disaggregating the solution to obtain the 

operations of each individual reservoir (Saad et al. 1996; Turgeon and Charbonneau 

1998).  Turgeon (1981) and Archibald et al. (1997) compared the solutions obtained with 
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their aggregation methods with those obtained by solutions of the entire system using 

deterministic optimization models.  Turgeon found a difference in average annual value 

of less than one percent for a system of reservoirs in series, while Archibald et al. found a 

difference in average annual value of 0.3-0.4% for systems of 3 to 4 reservoirs, 2.2% for 

a system of 8 reservoirs, and 3.1% for a system of 17 reservoirs.  However, neither paper 

attempted to validate the results by operating the same systems using a simulation model.  

Furthermore, these numbers do not truly describe the differences between simple and 

complex model formulations because the simplification gained by the spatial aggregation 

is offset by the added complexity of incorporating stochastic series of inflows.  Thus, it is 

difficult to evaluate the significance of these comparisons in terms of model complexity. 

Loague and Freeze (1985) and Jakeman and Hornberger (1993) studied the effects 

of complexity on rainfall-runoff model results.  Loague and Freeze modeled 269 rainfall 

events on three upland catchments using a regression model, a unit hydrograph model, 

and a quasi-physically based model.  They found that the regression and unit hydrograph 

models, which are simpler, provided as good or better runoff predictions than the more 

complex physically based model.  Jakeman and Hornberger tested the impact of the 

number of model parameters by modeling seven catchments using six different storage 

configurations.  Although the available configurations included three three-reservoir 

configurations, the optimal configuration for every catchment was either one storage or 

two storages in parallel.  Thus, these rainfall-runoff studies found that the most complex 

model formulation is not necessarily the most accurate.  In these cases, the superior 

performance of the simpler formulations is due in part to an absence of sufficient data to 

accurately characterize the more complex formulation. 
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Fontaine (1995) provides evidence that a more complex rainfall-runoff model 

produces better results for extreme flood situations.  The same extreme flood was 

modeled using both a simple and a complex modeling approach and the results of each 

were compared to observed data.  The simple approach used the HEC-1 model applied as 

an event-mode model without calibration.  The more complex approach used the 

Hydrologic Simulation Program-Fortran (HSPF) in continuous mode with extensive 

calibration.  The results showed that the modeled results exceeded observed data in peak 

daily discharge by 40% with HSPF and by 79% with HEC-1.  The modeled 5-day runoff 

volumes were 20% higher than observed data using HSPF and 29% higher using HEC-1.  

Although the more complex modeling approach yielded better results than the simpler 

approach its results are so different from the observed data that its implementation may 

not be worth the additional effort required. 

The issue of modeling scale can be very important in hydrologic modeling.  While 

at small scales the patterns of topography, soil, and rainfall are important in governing 

runoff hydrology, increases in scale cause corresponding increases in the variability of 

distributions that are sampled within the watershed area.  Very large scales, however, 

contain inhomogeneities brought about by large-scale geologic formations.  To solve this 

problem Wood et al. (1988) proposed the use of an intermediate scale, which they call the 

Representative Elementary Area (REA), at which the average hydrologic response is 

invariant or only slowly varies with increasing catchment area.  Wood et al. (1988) and 

others (Wood 1995; Woods et al. 1995) have attempted to determine the size of the REA 

and found values ranging from 0.5 to 5 km2. 
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 For unsteady open channel flow, the nonlinear Saint Venant equations apply.  

However, as there are no exact solutions of these equations for any but the simplest 

problems, numerical solution schemes of varying complexity have been developed to 

obtain approximate solutions.  Numerous studies compare the accuracy and 

computational effort of two or more such schemes.  Ponce et al. (1978) compared the 

performance of a kinematic wave model, which neglects the inertia and pressure terms in 

the equations of motion, and a diffusion wave model, which neglects only the inertia 

terms, and compared the results with those of a full dynamic model.  Both schemes gave 

good results in most cases, but the diffusion wave model better described the subsidence 

of the flood wave.  Keskin and Agiralioglu (1997) compared the results of a general 

dynamic model with those of a simplified dynamic model, in which the derivative of the 

friction slope with respect to space is assumed to be negligible, and found similar results.  

Thus, these studies of unsteady open channel flow have found good correlation between 

the results of various schemes to approximate the Saint Venant equations in most cases. 

 Sinha et al. (1995) studied the effects of time and space scales on the results of a 

flood routing model.  A finite-difference spectral method based on the Chebyshev 

collocation technique and a finite-difference Preissmann scheme were applied to route a 

log-Pearson Type III hydrograph through a wide rectangular channel.  The results 

showed that the order of accuracy for time discretization is more important than for space 

discretization.  The spectral scheme, which is almost second-order accurate in time and 

second-order accurate in space, performed worse with small time steps and better with 

larger time steps than did the Preissmann scheme, which is first-order accurate in time 

and infinite-order accurate in space. 
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Water quality modelers also have devoted some attention to evaluating the effects 

of modeling complexity.  Costanza and Sklar (1984) classified 87 models of freshwater 

wetlands according to their degrees of articulation, which is a measure of complexity that 

takes into account the time and space scales and the number of components used by the 

model.  For each model tested, an index was calculated for each of these factors and the 

model articulation equaled the average of the three indices.  Each model was evaluated 

for descriptive accuracy by comparing the model output with a set of historical data.  

They found that the models with lower articulation (the simpler models) tended to have 

higher descriptive accuracy.  These results also seem to run counter to the common 

assertion that more complex models are more reliable, although they may reflect errors 

caused by limited calibration data. 

Warwick and Cale (1987) proposed a method for water quality models that uses 

Monte Carlo techniques to estimate the probability of achieving a desired level of 

reliability.  The desired reliability is achieved by balancing the errors caused by choosing 

a model of inappropriate complexity (Type I error) and the errors caused by uncertainties 

in parameter characterization (Type II error) in order to minimize overall modeling error.  

Warwick (1989) found that reducing one type of error often causes an increase in the 

other kind of error, and often an overall reduction in model reliability.  This indicates that 

more complex models are only valuable if adequate data exists to describe their 

parameters. 

Many other studies of model complexity exist in a variety of modeling fields.  

These include: a comparison of two point snowmelt models under different weather and 

snowpack conditions (Bloschl and Kirnbauer 1991); a study of models describing the 
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decrease of galactic cosmic rays applied at both one and two dimensions (Le Roux and 

Potgieter 1991); Stockle’s (1992) study of the performance of plant canopy models at 

different levels of compelxity; Palsson’s and Lee’s (1993) study of red blood cell 

metabolism models; and a study of the effects of model complexity on the performance 

of automated vehicle steering controllers (Smith and Starkey 1995).  With the exception 

of Stockle (1992), all of these studies concluded that simpler models yield inadequate 

results in some situations.  For example, Le Roux and Potgieter found that the two-

dimensional model matched observed data much better at very large radial distances.  

Smith and Starkey concluded that low-order vehicle steering controller models are 

inadequate for high-g manuevers.  Thus, these models differ from reservoir, hydrologic, 

and water quality models in that the accuracy of their results is greatly influenced by 

model complexity.  Perhaps more complete data sets are typically available in these fields 

to characterize more complex model formulations. 

To summarize, several studies attempt to evaluate the effects of model complexity 

on results.  However, these studies are distributed over a wide range of modeling 

applications, and an intensive investigation of the impacts of model complexity on results 

has not been performed for any particular class of models.  In general, studies of 

reservoir, hydrologic, flood routing, and water quality models have shown that simpler 

model formulations are very often more accurate than more complex formulations.  

Typically, this result is attributed to a lack of available data to properly characterize the 

additional parameters present in the more complex model.  Studies in other fields have 

shown complex models to be more accurate, which may be due to the availability of more 

complete data in those fields. 
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WHAT IS MODEL COMPLEXITY? 

There is no single accepted definition of model complexity.  Most authors who 

discuss the subject do not even attempt a definition.  Applying the dictionary definition of 

complexity, Brooks and Tobias (1996) define model complexity as “a measure of the 

number of constituent parts and relationships in the model.”  With this definition, they 

distinguish a model’s complexity with its level of detail.  This is the definition used in 

this paper. 

Numerous indicators can be used to measure a model’s complexity (Palmer and 

Cohan 1986).  It would be impossible to develop a single measure of complexity that 

incorporated all aspects of complexity.  What is more useful is to evaluate alternative 

models for each indicator individually to get a general feeling for each model's level of 

complexity.  Thus, model complexity can be divided into several distinct types of 

complexity and numerical indicators can be developed to quantify each type of 

complexity.  Some types of model complexity, with example indicators, appear in Table 

1. 

Table 1.  Types of Model Complexity 
Complexity Type Example Indicator 

Spatial Number of spatial variables and the degree to which they interact 
Temporal Number of time steps incorporated into the model 

Input Amount of input required to run the model 
Uncertainty Number of stochastic variables incorporated into the model 

Programming Length of the model’s programming code 
Interface Complexity of the user’s interaction with the model 
Run-time Amount of time required to run the model 

Interpretation Amount of time required to interpret the model results  
Calibration Amount of data needed to calibrate the model 

 

In this study, the CALVIN model of California (Howitt et al. 1999) is used to 

model each test case - only the model input data is changed.  Thus, the indicators for the 
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uncertainty, programming, and interface classes of complexity are the same for each case.  

Temporal complexity is also the same for all alternatives because the same 72-year 

period of record has been run in monthly time steps for all six test cases.  Input 

complexity is neglected because the test cases are simplifications of an existing model 

and so it is difficult to evaluate how much effort would have been required to assemble 

the data for each individual alternative.  In some cases, data were already available in 

disaggregated form, so the input data cost may actually increase slightly for the less 

complex models.  Finally, calibration complexity is neglected because this study is not 

concerned with the accuracy of any of the individual model runs, but only with the 

differences between them.  This paper focuses on three types of complexity, spatial, run-

time, and interpretation, which are discussed below. 

1.  Spatial Complexity 

In this study, the spatial complexity is measured as the sum of the number of 

inflow links, reservoirs, and demand nodes contained in the system.  A disadvantage of 

this measure is that certain aspects of spatial complexity, such as the representation of 

conveyance facilities, are neglected.  However, in general the overall schematic 

complexity of each test case approximately corresponds to the relative values of spatial 

complexity.  Input and calibration complexity are likely to increase with spatial 

complexity. 

2. Model Run-time 

In this study, model run-time complexity is measured in terms of the number of 

decisions required of the optimization model and the number of iterations needed to find 

a solution.  These are considered more reliable measures of complexity than the actual 

run-time because they are not influenced by the computer’s processing speed.  With 
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recent advances in computer technology, model run-time complexity is becoming less 

important as a practical consideration in model selection. 

3. Interpretation Time 

The interpretation time is the amount of time needed by the modeler to analyze 

the results produced by the model and to interpret their practical meaning.  An important 

factor to consider when making such a comparison is what output should be generated 

from each model.  A more complex model usually generates more detailed results than a 

simpler model.  The time needed to generate and evaluate all of the potential results from 

a complex model can be much greater than is required to interpret more aggregated 

results similar to those produced by a simpler model.  However, it is often necessary to 

look at a model’s detailed results to ensure that the model is behaving reasonably.  In this 

study, it would be difficult to accurately gauge the amount of time required to evaluate 

each case individually because all six test cases involve the same water system.  

Therefore, the interpretation time will be measured as the number of time series required 

to analyze each case and understand the results.  This measure counts the deliveries to 

each demand, storage in each reservoir, surplus Delta outflow, marginal values of each 

inflow, and shadow values of each minimum flow, refuge demand, and surface water 

reservoir. 

THE CALVIN MODEL 

 CALVIN is an optimization model developed at the University of California at 

Davis to describe the California inter-tied water system (Howitt et al. 1999).  CALVIN 

uses the network flow reservoir optimization model HEC-PRM (USACE 1994) to 

maximize economic benefits by allocating water over a 72-year period of historical 

inflows.  Economic benefits are characterized by piece-wise linear economic value 
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functions at each demand location.  The entire CALVIN model contains 56 surface water 

reservoirs, 30 groundwater reservoirs, 29 urban demand regions, and 26 agricultural 

demand regions.  The model results contain monthly time series of flow and storage for 

every element in the system.  The alternative used as a base case for this study is that of 

an unconstrained water market, with water allocations fettered only by physical and 

environmental constraints.  Because preliminary CALVIN runs have shown few 

shortages under this scenario, the amount of water available has been artificially reduced 

for this study by reducing the external inflows by 20% and by increasing the losses on 

demand return flows by 30%.  While these assumptions are acceptable for studying 

model complexity, the optimization results presented here are not intended to accurately 

represent the system's current or potential operation. 

For this study, only the northern portion of the CALVIN model (the Sacramento 

Valley and Sacramento-San Joaquin Delta) is used (see Figure 1).  The portions of the 

state south of the Banks and Tracy pumping plants and of the Calaveras River are 

assumed to be operated identically for each alternative and are not modeled.  The 

northern portion of CALVIN contains 17 surface water reservoirs, 9 groundwater 

reservoirs, 7 urban demand regions, and 9 agricultural demand regions.  The groundwater 

storage in each agricultural region is depicted by a single reservoir.  This representation is 

considered the base case (Test Case A) for the present study and is the most complex 

model tested.  Simpler model formulations are aggregated versions of this base case. 
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Figure 1 (Part 1).  Case A Schematic 
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Figure 1 (Part 2).  Case A Schematic 
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TEST CASES 

 Six test cases have been developed at different levels of aggregation.  Table 2 

shows the relative complexity of each alternative's physical representation.  The sum of 

the number of inflows, reservoirs, and demand regions is used as an overall index of 

spatial complexity.  A brief description of each case is given below.  Schematic 

representations of Cases D-F can be found in the appendix. 

Table 2.  Test Case Spatial Complexities 
Case # Inflow Links # Reservoirs # Demand Regions Spatial Complexity 

A 40 25 15 80 
B 28 19 13 61 
C 17 13 12 42 
D 12 7 7 26 
E 4 2 2 8 
F 3 1 1 5 

 
Test Case A: Full CALVIN Representation 

 Case A is the full CALVIN representation of the northern portion of the 

California water system as described above and depicted in Figure 1. 

Test Case B: Local Aggregation 

  Case B differs from Case A only in the aggregation of selected regional elements.  

The following pairs of reservoirs are combined to form individual composite reservoirs: 

• Clair Engle Lake and Whiskeytown Lake 
• Lake Oroville and the Thermalito Afterbay 
• New Bullards Bar Reservoir and Englebright Lake 
• Pardee Reservoir and Camanche Reservoir 
• Groundwater Storage in agricultural regions 1 and 2 
• Groundwater Storage in agricultural regions 3 and 4 

 
 In addition, agricultural regions 1 and 2 have been combined into a single demand 

region, as have agricultural regions 3 and 4.  On the American River, the inflow for the 

north and middle forks has been combined with that of the south fork.  Finally, the 
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conveyance paths to the Contra Costa Water District via the Rock Slough, the Old River, 

and the Mallard Slough have been combined into a single link. 

Test Case C: Aggregation by River System 

 In this case, the system is divided into nine regions.  Within each region, the 

surface water storage nodes, groundwater storage nodes, agricultural demand nodes, and 

urban demand nodes are combined into single aggregate nodes of each type.  In addition, 

the conveyance of water and the external inflow locations are greatly simplified.  The 

nine regions are divided according to river system or local region as follows: 

• Upper Sacramento River, including the Trinity River and Stony Creek 
• Feather, Yuba, and Bear Rivers 
• American River 
• Cache and Putah Creeks 
• Mokelumne River 
• Calaveras River 
• Contra Costa Water District 
• Sacramento-San-Joaquin Delta 
• San Francisco Bay Area portion of the EBMUD system 
 

 
 All of the system's water storage capacity and water demand is represented in the 

reservoir and demand nodes for these regions.  However, the Mokelumne River region 

does not contain any urban demand, the Calaveras River region does not contain any 

agricultural demand, the Delta region does not contain any surface water storage or urban 

demand, and the Contra Costa Water District and EBMUD systems do not contain any 

groundwater storage or agricultural demand. 

Test Case D: Aggregation of Eastern and Western Sacramento Valley 

 Case D is similar to Case C except that the river regions emanating from the 

Eastern portion of the Sacramento Valley (the Feather, Yuba, Bear, American, Calaveras, 

and Mokelumne Rivers), and those emanating from the Northern and Western portions 
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(the Sacramento and Trinity Rivers and Cache, Putah and Clear Creeks), are each 

combined into aggregate regions representing the Eastern and Western portions of the 

Sacramento Valley.  Within each of these regions, the surface water storage, groundwater 

storage, agricultural demand, and urban demand are combined into single aggregate 

nodes.  The representation of the conveyance and external inflows into these regions are 

also simplified relative to Case C.  The Contra Costa Water District, Sacramento-San 

Joaquin Delta, and EBMUD regions are represented as in Case C. 

Test Case E: Aggregation by Group Types 

 In Case E, surface water storage, groundwater storage, agricultural demand, urban 

demand, and the environmental refuges are each aggregated into individual nodes 

representing the entire contents of the modeled system.  Groundwater pumping links are 

constrained so that only a limited amount (the Redding demand) can be pumped to urban 

areas.  The external inflows have been combined into three links, one entering each 

storage node and one entering downstream of both nodes. 

Test Case F: Full Aggregation 

 In Test Case F, all agricultural and urban demand is combined into a single 

demand node.  While surface and groundwater storage remain separate, the configuration 

of the groundwater reservoir has been altered so that groundwater can supply both urban 

and agricultural demands up to the pumping limits. 

ISSUES AFFECTING CASE COMPARISONS 

 Certain aspects of spatial aggregation make it difficult to compare the results of 

particular runs of each case.  These limitations can be divided into two classes - those 

caused by the aggregation of spatial elements and data and those caused by limitations of 

the network flow optimization model. 
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Aggregation Limitations 

 When developing Cases B-F, the data in Case A was duplicated as thoroughly as 

was possible given the simplified spatial formulations.  In doing so, however, 

assumptions had to be made to combine data from several different links and storage 

nodes in Case A onto individual elements in the aggregated systems.  Of these, the most 

problematic involved the aggregation of demand regions and of the constraints and costs 

on conveyance facilities. 

 The aggregation of the demand regions was done such that the total demand of 

each aggregated region would equal the sum of the total demands of each of the 

component demand regions.  While this assumption allows for one-to-one comparisons of 

deliveries between different cases, it does not account for the reduction in demand caused 

by reuse between the demand regions.  To account for reuse, reuse links were added to 

each aggregated demand region that allowed for return flows to be re-routed back to the 

region’s delivery node.  The amount of return flow available for reuse was conservatively 

limited to the amount available to the downstream demand if the upstream demand were 

fully supplied.  While this exaggerates the amount available for reuse in virtually all 

months for most of the aggregated agricultural regions, the actual implementation of 

reuse was very low.  For example, while Case F has a reuse capacity of 800 TAF/year the 

addition of this reuse link increased the average annual deliveries by only about 10 

TAF/year. 

 The aggregation of conveyance facilities affected the representation of canal 

capacities, minimum flow requirements, and pumping costs in the simpler cases.  

Because aggregated elements essentially have infinite and costless capacity between 

them, many canal capacity constraints are neglected altogether, and many of those that do 
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appear are limited by the demand of a particular region within an aggregated region 

rather than by the size of a particular canal.  While most minimum flow constraints and 

pumping costs are represented in all cases, they are aggregated in the simpler cases and 

therefore do not reflect local conditions.  In a few cases it was necessary to eliminate 

certain data altogether.  For example, in Case F the pumping costs to CCWD and 

EBMUD are neglected because the urban and agricultural demands are combined.  This 

limitation may affect the economic results of Case F, and could explain why the Case F 

values shown in Tables 6 and 9 are consistently higher than those shown for Case E. 

Limitations of Network Flow Optimization 

For many water resource problems, there may be numerous near optima with very 

similar objective function values.  Thus, with small variations in formulation (such as 

might arise in the aggregation of data), several different solutions may be possible 

(Rogers and Fiering 1986).  While these possible solutions will have very similar 

objective function values, and most likely similar overall results, the values in any given 

year or in a given local region can be very different.  It can therefore be difficult to 

interpret the differences in results between different cases in particular time periods 

because small changes in the input data can cause the model to arrive at a different 

optimum and yield different results.  For example, although the average annual surplus 

Delta outflows for Case E are less than those for Cases A-D, during the 1982-83 flood 

Case E has much larger surplus Delta outflows (see Figure 12).  To test the impact of 

such deviations, Case E was re-run with a cost of $0.10/AF added for every acre-foot of 

surplus Delta outflow above 11 MAF in any given month.  The overall results were very 

similar, with the same average annual shortages and surplus Delta outflows, but the 

surplus Delta outflow in March 1983 was reduced from 25 MAF to 11 MAF. 
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MODEL RESULTS 

 The primary indicators used to evaluate the performance of the 6 cases are the 

average shortages and groundwater mining resulting from each model formulation.  

These results can be found for each case in Table 3.  In CALVIN, the shortage is defined 

as the difference between the maximum economic demand and the actual delivery.  Each 

case has 1,765 TAF/year of urban demand and 9,063 TAF/year of agricultural demand.  

Cases with higher complexity measures show larger urban and agricultural shortages and 

more groundwater mining.  Because urban deliveries are valued much more highly than 

agricultural deliveries, all cases show much fewer urban shortages.  Only Cases A-C 

show significant urban shortages.  While all cases show significant agricultural shortages 

(due to the artificial reduction of available water), there is a gradual increase in shortage 

quantity as the complexity increases.  The groundwater mining in Cases A-D is a 

function of the water balance in individual groundwater basins, explained later in this 

section.  

Table 3.  Comparison of Results for Cases A-F 
 
 

Case 

 
Total Shortages 

(TAF/year) 

Agricultural 
Shortages 

(TAF/year) 

 
Urban Shortages 

(TAF/year) 

 
Groundwater Mining 

(TAF/year) 
A 2,282 2,274 8 42.4 
B 2,143 2,137 7 34.2 
C 2,127 2,121 7 34.2 
D 1,918 1,918 0 34.2 
E 1,719 1,719 0 0 
F 1,636 n/a n/a 0 

 

To evaluate the accuracy of each case, it is assumed that the results of Case A are 

100% accurate and that any deviations between the results of Case A and any other case 

are the result of the spatial aggregation of that case.  While in actuality Case A (as an 
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optimization model) represents a major deviation from actual system operation, it is 

assumed that, given sufficient data, the most complex formulation will be the most 

accurate and therefore can be used as a benchmark for evaluating other formulations.  

Two measures used for comparison are the total shortages and the average annual net 

delivery, which is calculated as follows: 

Net Delivery = Total Demand – (Total Shortages + Groundwater Mining). 

The percent errors are calculated for each case by taking the percent difference 

between the net delivery or total shortage for the case in question and that for Case A.  

The percent errors in net delivery and shortage are shown for each case in Table 4.  Table 

5 contains the complexity measures for each case.  Figure 2 shows the percent error in net 

delivery versus percent complexity for each complexity measure.  These results show 

 
Table 4.  Net Delivery and Errors Relative to Case A 

 
 
 

Case 

 
 

Net Delivery 
(TAF/year) 

 
% Error 

in Net 
Delivery 

 
% Error 
in Total 
Shortage 

Average Net 
Difference in 

Monthly Shortage 
(TAF/month) 

Average Absolute 
Difference in 

Monthly Shortage 
(TAF/month) 

A 8,504 0.0% 0.0% 0.0 0.0 
B 8,651 1.7% 6.1% 11.5 13.3 
C 8,667 1.9% 6.8% 12.9 19.0 
D 8,876 4.4% 16.0% 30.3 32.9 
E 9,109 7.1% 24.7% 46.9 49.2 
F 9,192 8.1% 28.3% 53.8 54.8 

 

Table 5.  Complexity Measures for Each Case   
 

Case 
Spatial 

Complexity 
 

# Iterations 
# Decision 
Variables 

Interpretation 
Complexity 

A 80 1,523,663 442.603 129 
B 65 1,383,246 382,551 103 
C 44 816,591 203,695 69 
D 26 373,372 118,660 37 
E 8 105,396 44,498 15 
F 5 53,037 32,114 14 
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good correlation between each of the complexity measures.  As the values of each 

decrease, the percent error increases.  The rate of increase in percent net delivery error 

does not increase linearly with the increase in complexity.  The amount of error increases 

the most between Cases E and F but very little between Cases B and C.  When measured 

in terms of shortage rather than net delivery, the percent errors of Cases B-F are much 

larger in relation to Case A.  Figure 3 shows the percent errors in shortage and net 

delivery for each case.  The percent shortage errors are less than 7% for Cases A-C but 

greater than 16% for Cases D-F, which indicates that a certain amount of aggregation is 

possible with minimal error but that greater aggregation may produce unacceptable 

errors.  However, these measures underestimate the error of Case C because, while the 

other cases have less total shortage than Case A in almost every month, Case C has 

greater total shortage than Case A in many months.  This is indicated by the differences 

Figure 2
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in the average monthly net and absolute shortages for each case relative to Case A, which 

can be seen in Table 4.  While the average net and absolute differences are very similar 

for the other cases, for Case C the average net difference is much lower. 

 

The remainder of this analysis focuses on more specific aspects of the results.  

First, the annual time series results will be analyzed for the entire system.  Then, monthly 

time series analysis will be performed on the entire system for specific time periods.  

Finally, the differences in results for certain local regions will be analyzed. 

System-Wide Analysis of Annual Time Series 

 Figure 4 shows the probabilities of exceedance of total annual deliveries for each 

case.  All 6 cases show the same basic reliability, with a rapid drop in delivery to about 

80-85 percent with 25 percent reliability and then a gradual decrease to about 70-75  

Figure 3
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percent delivery with 100 percent reliability.  With a few exceptions, the curves are 

ordered as might be expected, with the more complex cases suggesting less reliability of 

delivery than the more simple cases.  The greatest exception is Case B, which is less 

reliable than Case C for deliveries that are exceeded more than 60 percent of the time.  

This result seems to show that while spatial aggregation tends to allow greater delivery 

reliability during the years with more water available, these gains can be made at the cost 

of greater shortages during drier years.  It may be that the aggregation of storage allows 

for more efficient water use during wet years but is not as much of a factor during 

drought years.  It is unclear, however, why the model does not use the greater flexibility 

of the simpler formulations to alleviate the more severe droughts, in which the marginal 

cost of shortage would be higher.  This may be caused by the problem of flat objective 

Figure 4: Total Deliveries
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function surfaces in the CALVIN model, by which several different possible solutions 

give very similar objective function values.  The spatial aggregation may cause minor 

deviations between the cases in individual years that may skew the shape of the reliability 

curves.  This explanation is supported by the annual time series of shortages, which show 

frequent fluctuations in magnitude order between the cases from year to year.  As an 

example, 

Figure 5 shows the annual time series of shortages for each case from 1973 to 

1993.  This time period contains two significant droughts: 1976-77 and 1987-93.  In 

1974, Case B has slightly more shortage than Case A, which is followed by Cases C, D, F 

and finally E.  By 1976, however, Case B has fewer shortages than Case A, C, or E.  

Between 1988 and 1989, both Case B and C show sharp drops in shortage while the other 

Figure 5
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4 cases stay flat.  Case D shows a unique response to both droughts in that its level of 

shortage rises the fastest of all 6 cases in both 1975 and 1984, to about 2,200 TAF, but 

then remains flat so that Case D has the lowest shortage in 1977 and from 1990-93.  

Fluctuations in curve order such as these make it difficult to draw definite conclusions 

about the differences between the models in individual years.  However, the results in 

Figure 5 indicate that all 6 model formulations are reacting realistically to the annual 

changes in hydrology – all show increases in the amount of shortages during the drought 

years and virtually no shortages during the extremely wet years of 1982-83. 

 The drought years also experience the largest urban shortages, which appear in 

Figure 6.  All of the cases which contain urban shortages (A-D) experience them during 

the 1987-93 drought period and Case A, which contains the largest total urban shortages, 

has additional shortages from 1976-78.  Although the differences in urban shortage are 

small, they are significant because of the high value of urban demands.  All of the urban 

shortages occurred in the EBMUD demand node, which is isolated from the rest of the 

system in that it can only receive water from the Pardee Reservoir on the Mokelumne 

River.  In Cases B and C, the Pardee Reservoir is combined with the Camanche 

Reservoir, providing additional storage space to provide water for EBMUD.  With this 

change, the shortage experienced from 1976-78 is eliminated.  The further aggregation in 

Case D of the Mokelumne River with the rest of the Eastern Sacramento Valley 

eliminates almost all of EBMUD’s shortage, while the additional aggregation in Cases E 

and F eliminates the shortage altogether.  Thus, there is a gradual reduction in EBMUD’s 

shortage as the amounts of storage and external inflows available to supply the region 

increase. 
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System-Wide Analysis of Monthly Time Series 

On an average monthly basis, there appears to be very good correlation between 

the model complexity and the level of deliveries.  Figure 7 shows the average total 

monthly shortages for each case.  All of the cases have little shortage from October 

through March, when there are very few agricultural water demands.  During the summer 

months, all cases have higher shortages and, with a few exceptions, the more complex 

cases have higher shortages than the simpler cases during every month.  In the next 

sections, the results for each case will be analyzed on a monthly basis for the 1976-77 dry 

period and for the 1982-83 wet period. 

Figure 6
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1976-77 Drought 

As shown in Figure 5, each case responded differently to the 1976-77 drought.  

While Cases A, B, C, and F experienced shortage peaks during 1976 and 1977, the 

shortages in Cases D and E tended to plateau at a smaller shortage rate but maintained 

that level for a longer time period.  In addition, although Case B had larger overall 

shortages, Case C tended to have larger annual shortages during the drought years.  These 

trends also can be seen in the plot of monthly agricultural shortages shown for each case 

from January 1976 to January 1978 in Figure 8.  While all 6 cases had the largest 

shortages during June and July of each year, Cases D and E had the smallest peaks in 

both years with the exception of Case B in 1976.  In addition, Case C had the largest peak 

in 1976 and virtually the same shortages as Case A in 1977.  The magnitude of the 

Figure 7
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particular shortages for each case in 1976-77 may help to explain the economic 

differences between the cases in those years. 

  

Because HEC-PRM is a deterministic optimization model, it is able to anticipate a 

drought and fill the reservoirs to capacity to provide maximum possible deliveries.  The 

model can also anticipate the end of the drought and completely drain the reservoirs 

during the last dry year.  This operation is reflected in the total monthly surface water 

storage curves shown for each case in Figure 9.  This plot is shown beginning in January 

1974 to show the first critical peak in storage at which the reservoir capacity constraints 

are most costly.  From this figure, it can be seen that all of the cases reach a peak in 

March 1974, reach another peak in May 1975, and then are depleted until a minimum is 

Figure 8
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reached in November 1977.  While all the cases are able to efficiently manage the 

drought, the simpler cases are able to operate the storage space more efficiently because 

the storage and reservoir inflows are aggregated into fewer storage nodes.  Thus, in 

March 1974, Cases E and F reach the highest peak, followed by Cases D, C, B, and A.  

These differences occur because in the more complex cases the storage space and 

reservoir inflows are divided among several reservoirs and conveyance constraints make 

it impossible to employ the entire storage space in every reservoir in every month.  Thus, 

in Cases A-D, some reservoirs are at capacity in March 1974 and others are not.  During 

the reservoir depletion period, Cases A-E seem to follow very similar storage paths while 

Case F depletes its surface water storage more rapidly.  This difference is probably 

Figure 9
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caused by the increased flexibility of groundwater storage in Case F; it is the only case in 

which groundwater can be used to supply any demand in any month.  Thus, the rapid 

depletion of surface water storage is not as critical. 

Table 6.  Economic Output (in $/AF) For Each Case 
 
 
 
 

Case 

 
Lake Shasta 

Storage 
Shadow Value 

(Mar 1974) 

 
Required 

Delta Outflow 
Shadow Value 

(Apr 1974) 

 
Sac West 
Refuges 

Shadow Value 
(Apr 1974) 

San Joaquin 
River 

Marginal 
Value 

(Apr 1974) 

Agricultural 
Marginal 

Willingness-
to-Pay 

(1976-77) 
A 133.5 133.9 116.0 133.9 138.5 

B 132.6 133.0 116.0 133.0 113.6 

C 138.5 138.9 117.8 138.9 146.7 

D 120.2 120.7 101.0 120.7 114.8 

E 49.6 49.7 42.0 49.7 103.9 

F 104.2 104.5 88.3 104.5 103.9 

 

 During March 1974, certain reservoirs in all 6 cases have a very high shadow 

value on the reservoir capacity constraint.  This shadow value reflects the cost of water 

shortage during the coming drought.  The reservoir containing Shasta Lake (SR-4) is at 

capacity in every case, and the shadow values in March 1974 for this reservoir can be 

seen for each case in Table 6.  In addition, Table 6 shows the shadow values on the 

Required Delta Outflow and for inflows into the Sacramento West Refuges, and the 

marginal values of additional inflow from the San Joaquin River in April 1974.  All of 

these economic values pertain to flow values that are represented individually in all 6 

cases, with the exception of the Sacramento West Refuges, which are combined with the 

Sacramento East Refuges in Cases E and F.  Each of the economic values are the highest 

in Case C, followed by Cases A, B, F, D, and E.  The low values shown for Case E are 

caused by the unusually low shortages of Case E in 1974 (see Figure 5).  While the other 
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cases have agricultural marginal willingness-to-pay values in 1974 comparable to those 

in 1976-77, the maximum agricultural marginal willingness-to-pay for Case E is only 

$43.2/AF in 1974.  With the exception of the Sacramento West Refuges, all of these 

values are very similar in each case.  The increased economic values for Cases C and F 

relative to the other cases may be due to the unusually high shortages they experience 

during 1976 and 1977.  The economic values for Case F may be higher than those for 

Case E because of the absence of the urban pumping cost to EBMUD and CCWD.  The 

shadow value on the Required Delta Outflow exactly equals the marginal value of 

additional inflow from the San Joaquin River for all months in all cases, which reflects 

the absence of any costs or losses on water flowing from the San Joaquin River out the 

Delta.  The Sacramento West Refuges shadow value is $8-22/AF less than the Storage 

shadow value in every case.  This difference occurs because the refuge is typically in 

parallel with the agricultural demand region while the reservoir and the Delta outflow are 

in series with both.  Thus, if the agricultural delivery were increased by one acre-foot 

because of reduced refuge demand, all of the return flow from that one acre-foot would 

still be needed to supply the Delta outflow.  However, if the Delta outflow requirement 

were reduced by one acre-foot, all of the return flow from that one acre-foot would be 

available for reuse, thereby increasing the value of that unit of water. 

All of the marginal and shadow values seem to be related to the marginal 

willingness-to-pay values for the agricultural regions.  The marginal willingness-to-pay is 

defined as the amount that the demand regions would be willing to pay to receive one 

additional acre-foot of water in a given month.  Table 6 shows the largest marginal 

willingness-to-pay value for any agricultural region in the Western Sacramento Valley 
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for every case during 1976 or 1977.  These values are shown primarily to demonstrate 

that they are of the same magnitude as the marginal values and shadow values.  It is 

difficult to draw definite conclusions from a comparison of the marginal willingness-to-

pay across different cases because for the more complex cases they represent the 

maximum value of many different demand regions, each of which has a different 

marginal willingness-to pay value.  The marginal-willingness-to-pay is much smaller for 

agricultural regions than for urban regions.  The EBMUD demand node in Case A was 

the only urban demand node in any case to have any shortage during the 1976-77 

drought.  Figure 10 shows the monthly shortages and the marginal willingness-to-pay for 

EBMUD from January 1976 to January 1978.  While the magnitude of shortage is small, 

Figure 10
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the marginal willingness-to-pay values are very large – they fluctuate around $1,500/AF 

during the drought period, which is much larger than the marginal willingness-to-pay 

values for the agricultural regions.  The marginal willingness-to-pay for EBMUD does 

not affect the other economic values in Case A because the EBMUD system is isolated 

from the rest of the system and any additional water that may be available could not be 

conveyed to the EBMUD demand node.   

 

1982-83 Flood 
 Because they were extremely wet years, no case contains any shortages during 

1982 or 1983.  As in the drought years, the results during these wet years were influenced 

by the perfect foresight of the deterministic optimization.  Figure 11 shows the total 

surface water storage values for Cases A-F from August 1981 through August 1984.  In 

Figure 11
Total Surface Water Storage
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October 1981, the total surface water storage is at the minimum in all 6 cases.  In March 

1984, all six cases store the maximum surface water storage possible (the maximum in 

March is less than in May or June because of changes in the amount of storage reserved 

for flood space).  However, the storage paths between these dates vary widely.  Cases A 

and B have nearly identical storage paths.  During most months, the storages in Cases A 

and B are higher than that in the other cases.  This is most likely caused by the 

disaggregation of the reservoirs, which makes it more difficult to refill all of the 

reservoirs in the later months.  The storage paths of Cases C and D are both fairly similar 

to those of Cases A and B, while Cases E and F deviate widely.  As during the drought 

period, Case F seems to maintain much lower shortages than do the other cases for many 

months.  Again, this may be caused by the increased flexibility of groundwater storage in 

Case F.  The availability of groundwater in later months makes the maintenance of 

surface water storage less critical. 

Table 7.  Average Annual Surplus Delta Outflows 
Case Surplus Delta Outflow (TAF/year) 

A 2837.5 
B 2773.8 
C 2448.8 
D 2277.2 
E 2159.0 
F 2072.1 

 

The excess water present in 1982-83 is reflected in the very large surplus Delta 

outflows during those years.  The Delta outflow is the only location in the model through 

which surplus flows can be removed from the system.  The average annual surplus Delta 

outflows can be seen in Table 7.  Over the entire 72-year period, the formulations with 

the larger complexities have larger surplus Delta outflows, which reflect the greater 
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ability of the aggregated reservoirs to capture flood flows.  Cases E and F, which both 

aggregate all of their surface water storage into a single reservoir, have far fewer surplus 

Delta outflows than Cases A-D. 

 

Figure 12 shows the surplus Delta outflows for all 6 cases from September 1982 

through August 1983.  As demonstrated earlier, the very large surplus Delta outflows in 

Case E during March 1983 are caused by a very small difference in the optimal objective 

function value.  Evan a small persuasion penalty reduced the peak to 11 MAF with very 

little change in the other results.  As with the storage curves, Cases A and B have nearly 

identical surplus Delta outflows and the largest peak flows of any of the cases.  Case C 

seems to follow the paths of Cases A and B fairly well, but does not reach the same peak 

Figure 12
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flow.  Case D also seems to follow a similar path as Cases A and B, but reaches a peak 

flow two months earlier.  Cases E and F seem to deviate significantly from Cases A and 

B.  Thus, there seems to be a gradual progression away from the Case A curve as the 

complexity is decreased. 

Analysis of Results From Local Regions 

 Thus far, all of the results presented have pertained either to the system as a whole 

or to those parts of the system which are modeled identically by all 6 cases.  In this 

section, the results are examined for selected local regions to determine what differences, 

if any, have resulted from the aggregation of system components.  In particular, the 

following components will be examined: 

• Groundwater storage in the North Sacramento Valley (GW-1) and the Delta (GW-9) 

• Agricultural deliveries in the Western Sacramento Valley (CVPM 1-4) 

• Average reservoir shadow values 

Groundwater Storage 
 The average annual groundwater mining was listed for each case in Table 3.  Case 

A had an average of 42.4 TAF/year of groundwater mining, Cases B-D had an average of 

34.2 TAF/year, and Cases E and F had no groundwater mining.  All groundwater mining 

calculations are based upon the initial and ending groundwater storages for each 

groundwater basin.  Months in which the groundwater level is raised count as negative 

groundwater mining over the entire 72-year period.  The model is free to have any ending 

storage, but must pay a very large cost for every acre-foot less storage in any 

groundwater basin than that basin’s initial storage.  Therefore, groundwater mining will 

only occur if its constrained outflows are greater than its inflows over the entire 72-year 

period.  The constrained groundwater basin outflows include pumping to local urban 
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demands, infiltration losses, and losses to other groundwater basins.  If the sum of these 

values exceeds the sum of the inflows, which include natural recharge, return flows and 

gains from other basins, groundwater mining will occur.  While this will not normally be 

the case, groundwater mining was found in 2 groundwater basins in Case A because of 

the artificial decrease in groundwater inflows into the system.  This decrease caused the 

inflow in these basins to be less than the outflow. 

 Of the 42.4 TAF/year of groundwater mining in Case A, 34.2 TAF/year occurred 

in GW-9 and 8.2 TAF/year occurred in GW-1.  These results only persisted in the other 

cases if these groundwater basins continued to be disaggregated from other groundwater 

basins.  GW-1 is aggregated with GW-2 in Case B and further aggregated in the other 

cases.  The combined GW-1 and GW-2 groundwater basin in Case B has no groundwater 

mining, which indicates that there is enough excess inflow in GW-2 to make up for the 

water deficit in GW-1.  Similarly, the GW-9 groundwater mining persists in Cases A-D 

when this region is left disaggregated but is eliminated when all groundwater is 

aggregated together in Cases E and F.  Although these examples result from an artificial 

change made to the groundwater hydrology, they could be significant if found in a model 

intended to be accurate.  They indicate that the implementation of a more aggregated 

model formulation can not only cause a lack of precision about the location of certain 

results within aggregated regions but also eliminate important results that could be 

derived from a more complex formulation. 

Agricultural Deliveries 
 This analysis explores the effects of aggregating four agricultural regions in the 

West Sacramento Valley (CVPM 1-4) and focuses on Cases A-C.  In Case A, all four 

regions are represented separately.  In Case B, CVPM 1 and CVPM 2 are combined, as 
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are CVPM 3 and CVPM 4.  In Case C, all four agricultural regions are combined into a 

single demand region.  The average percent deliveries for each grouping of CVPM 

regions in each case are shown in Table 8. 

Table 8.  Percentage of Total Agricultural Demand by CVPM Region for Cases A-C 
Case 1-4 1-2 1 2 3-4 3 4 

A 69.1% 77.8% 92.3% 69.9% 67.4% 44.4% 82.6% 
B 72.3% 75.8% n/a n/a 72.2% n/a n/a 
C 76.1% n/a n/a n/a n/a n/a n/a 

 

 These results indicate that the reliability of demand delivery generally increases 

as the demand regions are aggregated.  The only exception is in CVPM 1-2, in which a 

higher percentage of demand is satisfied in Case A than in Case B.  This is caused by the 

occurrence of groundwater mining in GW-1.  Although GW-1 is compelled to not pump 

any groundwater to the agricultural region, the model attempts to maximize the 

agricultural return flow to the groundwater basin by maximizing the amount of surface 

water deliveries.  Therefore, CVPM-1 has a much higher delivery than CVPM-2 and the 

total percent delivery is greater than in Case B.  CVPM Regions 3 and 4 are similar in 

that CVPM 3 has much less reliable deliveries than the combined CVPM 3-4 demand in 

Case B while CVPM 4 has much more reliable deliveries.  This result occurs because 

CVPM 4 is downstream of CVPM 3 and can therefore implement its surface water return 

flows.  While Case B allows for the use of return flows within this region, no distinction 

is made between water used by either region.  The much more reliable supply of CVPM 4 

is therefore not indicated in the aggregated demand node of Case B.  These two examples 

of differences between Cases A and B are indicative of the kind of local information that 

can potentially be absent in a more simplified model run. 
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Table 9.  Storage Shadow Values 
Case Reservoir Average Shadow Value ($/AF) 

A Englebright Lake 9.11 
B Black Butte Lake 5.68 
C Pardee/Camanche Reservoir 4.01 
D EBMUD Local Storage 3.41 
E Total Aggregated Reservoir 0.99 
F Total Aggregated Reservoir 1.12 

 
Reservoir Shadow Values 
 When two or more reservoirs are aggregated together, the probability that the 

aggregated reservoir will have a storage equal to its maximum or minimum storage is less 

than the probabilities of any of the reservoirs represented individually.  The reduced 

pressure on reservoir storage is reflected in the average storage shadow values.  Table 9 

shows the reservoir in each case with the largest average shadow value on its upper-

bound constraint.  In Case A, Lake Englebright has the highest average shadow value.  

However, in Case B Lake Englebright is aggregated with New Bullards Bar and the 

aggregated reservoir has an average shadow value of only $3.51/AF, much less than that 

of Black Butte Lake.  In Case C, Black Butte Lake is aggregated with other reservoirs 

and therefore the Pardee/Camanche aggregated reservoir has the highest average shadow 

value.  In Case D the Pardee/Camanche reservoir is aggregated with additional reservoirs 

and the EBMUD local storage has the highest shadow value.  The EBMUD local storage 

is one of two disaggregated reservoirs in Case D – the two aggregated reservoirs have 

average shadow values of $0.98/AF and $1.50/AF, which are very similar to the average 

shadow values for the aggregated surface water reservoirs of Cases E and F.  All of the 

reservoirs with the highest shadow values in Cases A-D are relatively small reservoirs.  

Englebright Lake has a capacity of 66 TAF, Black Butte Lake has a capacity of 150 TAF, 

the Pardee/Camanche reservoir has a capacity of 641 TAF, and the EBMUD local storage 
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has a capacity of 153 TAF.  It seems that the larger the aggregated storage capacity, the 

less likely the maximum constraint will be binding and the smaller the average shadow 

value will be.  Because aggregated reservoirs tend to have relatively large capacities, they 

are likely to have smaller average shadow values.  Thus, reservoir aggregation can have a 

significant effect on the valuation of surface water storage.  For capacity expansion 

location and valuation purposes, more aggregate system representations are likely to 

reduce the estimated values of new capacity and change the locations of the most 

preferred expansion locations. 

CONCLUSIONS 

 This study yields insight into the effects of spatial complexity on the results of a 

network flow optimization model.  If the most complex formulation is assumed to be the 

most accurate, each level of simplification introduces some additional error to the results.  

The magnitude of this error, however, differs depending upon how one looks at the 

results.  Although the net delivery and shortage for each case are inter-dependent, the 

degree of error appears much greater if viewed in terms of shortage rather than net 

delivery.  Case F, for example, has an 8.1% error in net delivery but a 28.3% error in 

shortage.  While 8.1% may be considered an acceptable margin of error given the 

magnitude of simplification, 28.3% clearly cannot.  However, the results for Cases B and 

C demonstrate that a certain degree of simplification is possible with minimal error. 

 Even with greater spatial aggregation it may still be possible to develop a 

reasonable and useful model.  Because the levels of both agricultural and urban shortages 

are reduced as the amount of aggregation is increased, modelers can compensate when 

developing a simpler model by making parameter and input assumptions that increase the 
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demand, reduce aggregated reservoir storage capacities, or reduce the amount of water 

available.  Perhaps, the reuse within aggregated demand areas can be neglected.  In 

addition, in many cases the magnitude of error may not be a major concern because the 

study in question is concerned with the differences in results between two or more 

alternatives, each of which will be equally affected by the errors caused by spatial 

aggregation. 

 Choosing an appropriate level of complexity might be easier if more studies were 

conducted to broaden understanding of the effects of model complexity on results.  This 

study is just the tip of the iceberg of what could be studied concerning model complexity, 

even for reservoir models.  Such studies could be expanded to explore the effects of a 

proposed policy alternative at each level of aggregation.  In addition, any of the types of 

model complexity listed in Table 1 could be examined for their relative effects, and these 

studies could be expanded to test the effects on many different systems.  The next logical 

step may be to explore the effects of temporal complexity by running the model at 

different time steps. 
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APPENDIX 2: TEST CASE SCHEMATICS 

Figure 13.  Case D Schematic 

 
Figure 14.  Case E Schematic 
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Figure 15.  Case F Schematic 
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