#### **California Urban Water Demands for 2100**

Manuel Pulido-Velazquez and Marion W. Jenkins

January 2002

#### 1. Introduction

The CALVIN urban economic value preprocessor model (see Appendix B, Jenkins et al., 2001) has been used to develop urban water demand functions across California to drive the optimization by the CALVIN model. These value functions are developed from current and projected estimates of population, per capita water use, sector water use breakdowns (residential, commercial/public, and industrial), industrial water production values, and monthly use patterns for each urban area, as well as from estimates of the seasonal residential price elasticities of demand and current retail water price for each urban area represented in CALVIN.

Population estimates are based on a spatially disaggregated projection of population for the year 2100 (Landis and Reilly, 2002). These spatial data, at county and California Department of Water Resources (DWR) detailed analysis units (DAU) scales, have been aggregated into the different CALVIN urban nodes.

Per capita water use has been estimated using a California DWR 2020 projection of per capita urban water use as a baseline (DWR, 1998a). The change in population density has been translated into a change in per capita water use (pcu) using linear regressions of cross-sectional data on observed population density and pcu for distinct climatic regions in California.

Projections of land use conversion from agriculture to urban and likely location of new housing developments allow urban projections to be consistent with agricultural land use assumptions.

After analyzing the new urban demand projections, new economic urban water demand areas have been added to the CALVIN network, mainly in the Central Valley and in some parts of southern California.

# 2. 2100 Projections of California's Urban Demands

The projected population and spatial distribution of urbanized land are taken from Landis and Reilly's study (2002) on California's urban population and footprint projections through the year 2100.

In this study, we project the annual county-level population growth through 2100. A crosssectional regression model relating county infill shares to remaining "greenfield" land is then used to project future infill and greenfield shares. Projected greenfield population growth is allocated to undeveloped sites in each region in order of development probability. These probabilities are taken from four regional spatial/statistical growth pattern models calibrated to historical development, and estimated for individual 1 ha sites. The four regional models cover the lower Sacramento Valley, the San Joaquin Valley, the Bay Area and Central Coast, and southern California. Using a geographic information system (GIS) allows representation of these spatial patterns of growth in new urban areas, which is aggregated at the DAU and county level.

As a result of Landis and Reilly's study, projected population and urban land are available at the DAU level in 2100 for a "high" and "low" scenario. By further aggregation of DAU data, we obtain 2100 population and urban area for each CALVIN urban node. Figure B-1 compares the 2020 DWR population projections (currently used for estimating urban water demands in CALVIN for 2020) and the new 2100 "high"scenario projection. The largest percent increases in population, Table 1, take place in Mojave, Coachella, Blythe and El Centro in Southern California, and in several urban nodes within the Central Valley (CVPM 4, 8, 13, 17, 20). The urban areas ´ aggregation in the Central Valley is derived from the urban water demands associated to each of the CVPM (or Central Valley Production Model) agricultural areas (USDI and USBR 1997).

# 3. Urban Water Demands Representation in CALVIN

The representation of California's urban water demands in CALVIN can be categorized in three groups according to their size and the way in which their water supply sources are modeled (see Appendix B, Jenkins et al., 2001, for a detailed explanation of the three categories):

- 1. Demands excluded from CALVIN analysis. These demands are supplied by sources outside the intertied water system modeled in CALVIN.
- 2. Demands included in CALVIN as fixed diversions (type "TS," for time series). Usually these are small demands represented as a fixed time series of deliveries.

3. Demands included in CALVIN as economic value functions. The model uses two approaches to represent these economic functions. The first approach combines all urban water use sectors and develops a single economic value function (type "CF," or combined demand function). The second approach separates industrial water use from residential and other water uses and develops two separate value functions (type "SF," or split demand function). See Appendix B, Jenkins et al., 2001, for a detail description of the methods, assumptions, and data used to develop the economic value functions, as well as file "*URBAN3 v4.xls*" in the Software and Data Appendices of Jenkins et al., 2001.

For this 2100 study, the third category includes not only the original 19 urban demand areas economically represented in CALVIN for 2020 but also 11 additional areas. These 11 areas have been added to this category because of their expected high growth in water demand for year 2100.

#### Per Capita Water Use Projections

Per capita water use has been estimated using the DWR 2020 projection of pcu by county as a baseline (DWR 1998a, DWR 1998b). That work assumed that urban water conservation options (BMPs, or best management practices) would be put into effect by 2020. The differences between the DWR 1995 baseline pcu (DWR 1998a, DWR 1998b), previously used in CALVIN, and the 2020 base levels reflects the influence of the saving assumptions for BMPs, socioeconomic change, and differential population growth on pcu in each region, according to DWR projections.

In this work, the 2020 pcu baseline has been adjusted for 2100 to consider the population density effect on pcu. The change in population density from 2020 to 2100 has been translated into a change in pcu by using linear regressions between observed population density and current pcu. Two regression equations have been calibrated: one for inland DAUs and the other for coastal DAUs (Figures 2 and 3). As noted in these figures, the population density effect is higher for inland DAUs; climatic differences are expected to result in higher outdoor water use in inland areas (higher landscape irrigation requirements, sometimes as much as 60% of annual residential water use) compared with coastal regions in California. This would make inland pcu more sensitive to changes in population density, because higher density implies a smaller landscaped area per person. Figure 4 displays the per capita water use for the different CALVIN urban nodes, obtained from the 2100 population (high scenario)-weighted average densities at the DAU level, under different pcu assumptions—the 1995 DWR pcus, the 2020 DWR pcus, and the regression-adjusted pcus, which are the values finally adopted for this study.

Other important factors affecting pcu are income effect, evolution of economic activities, and water pricing (for a discussion on the influence of these factors, see, for example, Baumann et al.

1998). Because it is difficult to make any type of extrapolation of these factors to the year 2100, we have found it more realistic to consider only the density effect over the 2020 pcu baseline.

## 4. Method for Generating 2100 Urban Penalty Functions

Urban monthly residential demand functions are generated from the available data and converted into penalty functions to drive the optimization model. The main steps in the generation of urban value functions are

- 1. Determination of year 2100 urbanized area and population at the DAU scale from Landis and Reilly's (2002) urbanized spatial footprint projections and population growth forecasts.
- 2. Grouping and mapping of DAUs into CALVIN urban nodes.
- 3. Projection of 2100 populations and urbanized land for DAUs outside Landis and Reilly's spatial footprint projection boundaries using the county-level population and urbanized land growth estimates (see details in *Filling\_Gaps.xls* file). This approach has been applied to DAUs corresponding to CALVIN's economically represented urban nodes of Redding (DAUs 141 and 143) and Yuba (to DAU 167), and to DAUs in several other Central Valley urban demand areas in CALVIN (CVPM2, CVPM4, CVPM 5, and CVPM8).
- 4. Aggregation of the DAU's projected population and per capita water use data into CALVIN urban nodes. Per capita water use in each CALVIN node is obtained from the population-weighted average of the pcu of the DAUs composing that node.
- 5. Correction of data for DAUs that are split across CALVIN nodes.
- 6. Calculation of the annual water demand based on population and pcu.
- 7. Breakdown of demands by months and sectors. The demands are split into three sectors (residential, industrial, and others) according to statewide information available from DWR (1993). For each urban area, annual demand is disaggregated into monthly demands according to a monthly use pattern, derived from 1980-1990 statewide agency monthly municipal and industrial production data published in Bulletin 166-4 (DWR 1994). In urban demand areas with separate industrial value functions, an industrial average monthly use pattern (California Urban Water Agencies [CUWA], 1991) is applied to the industrial portion of the demand.

8. Using 1995 observed retail water prices and estimated seasonal price elasticity of water demand, the monthly penalty functions on water deliveries for each demand were generated for projected conditions. Prices for urban water are based on the 1995 California survey of residential water prices (Black and Vetch, 1995). Different long-term elasticity values are considered for winter, summer, and intermediate months (see references in Appendix B, Jenkins et al., 2001). No attempt has been made to adjust residential prices, elasticities or sector breakdown, and monthly use patterns from 2020 to 2100.

The penalty for any delivery less than the maximum demand equals the forgone benefit caused by water scarcity, equivalent to the area (integral) under the demand curve from the maximum demand (maximum = projected population times projected pcu) left-ward to the water delivery level. Commercial and governmental demands are assumed to be price insensitive. Therefore, the commercial and governmental target demand is added to the residential water delivery level to shift the penalty function to the right for each urban demand. The penalty function for industrial water demand is represented as a simple linear function of water shortages, using data for production losses for a 30% cutback in 1991 (CUWA, 1991). Figure 5 summarizes the information that the processor uses to generate the urban water penalty functions.

## 5. California's Urban Water Demands for 2100 "High" Scenario

To compute 2100 urban water demand for each DAU, the adjusted 2100 pcu was multiplied by the 2100 population forecast. The DAU results have been aggregated at the CALVIN urban node level and a set of monthly penalty functions has been generated for each of the urban demands, following the steps described in the last section.

After analyzing the 2100 results, 11 more economically represented urban demands (that were represented previously as fixed diversions) have been added to the 19 original ones at the 2020 level of development, based on expected growth in water demand and the likely need for new water supplies to meet high growth. Figure 6 displays the projected 2100 "high" water demand for each CALVIN urban node compared to the 2020 urban water demands previously used in CALVIN (see Appendix B, Jenkins et al., 2001).

Tables 2 and 3 list the existing and new economically represented urban demand areas in CALVIN, respectively. Table 4 provides the DAU-level data for the urban demands newly represented with economic value functions for 2100. Table 5 lists the demands that remain as fixed diversions (all are small demands in the Central Valley), their aggregated DAUs, and their 2020 and 2100 urban water demand. Finally, Figure 6 displays the previous CALVIN urban

water demands (year 2020 projection) and the final 2100 urban water demands for each urban CALVIN demand area.

For the three Metropolitan Water District (MWD) areas modeled in CALVIN (Central MWD, East and West MWD, and San Diego), the representation of the demands in the 2020 CALVIN model have been changed from the hydrologically varying representation used over the 72 year period (from October 1921 to September 1993) to average year representation for 2100 urban demands. The monthly use patterns for an average year are obtained from the historical average monthly pattern provided by MWD.

CALVIN urban demands for Antelope, Castaic Lake, Napa-Solano, Yuba, and Redding, which were previously represented as net demands in the CALVIN 2020 model (local supplies not modeled in CALVIN were deducted from these full target demand; see Appendix B, Jenkins et al., 2001), are now represented by their total target demand. These local supplies are explicitly represented as a fixed inflow time series.

A new demand has been created, Blythe, made up of Colorado River Hydrologic Region Planning Sub-Areas 02 and 03 (CR2 + CR3), given the high expected population growth in this area bordering the Colorado River. Likewise, Colorado Hydrologic Region Planning Sub-Area 05 (CR5) has been added to the original CALVIN 2020 San Diego urban node (DAU 120) for the year 2100.

Table 6 shows the total population and urban water demand values from the previous 2020 CALVIN study and from the 2100 projection.

### 6. Limitations

A number of limitations are contained in the 2100 urban water value functions estimated here for use in CALVIN. Most result from the difficulty in predicting changes in water use characteristics, patterns, and costs and values that could occur in the state by 2100. The most apparent limitations include:

- 1. CALVIN water demands functions for 2100 are developed assuming current seasonal estimates of the price elasticity of demand and the current retail water price; no adjustment is made for possible changes in either the price elasticity or the water prices.
- 2. No further BMPs in urban water conservation beyond those expected to be in place by 2020 (projections in DWR, 1998a) are added for 2100.

- 3. Bulk pcu projections for 2100 from 2020 estimates consider only the effect of increased population density on outdoor water use and ignore income effects that might occur as well as possible changes in the level of industrial, commercial, and public water use in different parts of the state.
- 4. The monthly pattern and amount of outdoor landscape water use in each urban demand area across the state in 2100 ignores the effects of climate change, holding these at the same values used in 2020.
- 5. The 2020 CALVIN scaled values for industrial water shortages at the county level (taken from 1991 surveys) are used unchanged in 2100. These values are given as dollar of production lost per fractional cutback in water availability from desired levels. Other estimates would require predicted changes in the level and type of industrial activity as well as changes in industrial water use practices by 2100.

## References

Baumann, D.D., J.J. Boland, and W.M. Hanemann. 1998. Urban Water Demand Management and Planning. McGraw-Hill, Inc., New York.

Black and Veatch. 1995. California Water Charge Survey. Black and Veatch Management Consulting Division, Irvine, CA.

CUWA. 1991. Cost of Industrial Water Shortages. Prepared by Spectrum Economics, Inc., San Francisco, CA.

DWR. 1993. California Water Plan Update, Bulletin 160-93. State of California, Department of Water Resources, Sacramento, CA. October 1994.

DWR. 1994. Urban Water Use in California, Bulletin 166-4. State of California, The Resources Agency, Sacramento, CA.

DWR. 1998a. California Water Plan Update, Bulletin 160-98. State of California, Department of Water Resources, Sacramento, CA.

DWR. 1998b. DAU-Based Population Projections for California and County-Based per Capita Water Use Databases. State of California, Depart. of Water Resources, Division of Planning and Local Assistance, Sacramento, CA.

Jenkins, MW, Draper, JD, Lund, JR, Howitt, RE, et al. (2001). *Improving California Water Management: Optimizing Value and Flexibility*. Center for Environmental and Water Resources Engineering. Report no.01-1. Univ. Calif. at Davis, California, US.

Landis, J.D. and M. Reilly. 2002. *How We Will Grow: Baseline Projections of California's Urban Footprint through the Year 2100.* Project Completion Report, Department of City and Regional Planning, Institute of Urban and Regional Development, University of California, Berkeley.

US Department of Interior, Bureau of Reclamation, 1997. *Central Valley Project Improvement Act Draft Programming Environmental Impact Stament, Technical Appendix, Volume Eight,* Sacramento, California.

|                                                      | DWD 2020   | P                    | 0/ nonvision |
|------------------------------------------------------|------------|----------------------|--------------|
| Urban name                                           | population | 2100 population      | increment    |
| Redding area                                         | 231,495    | 421,786              | 82           |
| Yuba and others                                      | 210,450    | 442,266              | 110          |
| Sacramento area                                      | 2,181,605  | 4,201,943            | 93           |
| Napa-Solano                                          | 711,324    | 1,334,834            | 88           |
| Contra Costa                                         | 565,353    | 896,486              | 59           |
| East Bay Municipal Utility District (EBMUD)          | 1,326,460  | 1,961,825            | 48           |
| San Francisco Public Utilities<br>Commission (SFPUC) | 1,501,900  | 1,987,120            | 32           |
| Santa Clara Valley (SCV)                             | 2,971,513  | 5,690,081            | 91           |
| Santa Barbara–San Luis Obispo<br>(SB-SLO)            | 713,675    | 1,534,167            | 115          |
| Ventura                                              | 1,022,850  | 1,956,007            | 91           |
| Castaic                                              | 688,500    | 1,156,443            | 68           |
| San Bernardino Valley Water<br>District (SBV)        | 878,944    | 1,016,582            | 16           |
| Central MWD                                          | 15,645,756 | 25,321,581           | 62           |
| East/West MWD                                        | 2,251,030  | 5,381,640            | 139          |
| Antelope Valley                                      | 1,079,650  | 1,821,155            | 69           |
| Mojave River                                         | 1,075,775  | 4,395,538            | 309          |
| Coachella                                            | 628,820    | 2,477,594            | 294          |
| San Diego                                            | 3,839,800  | 8,078,707            | 110          |
| Stockton                                             | 421,575    | 904,601              | 115          |
| Fresno                                               | 1,142,125  | 1,429,670            | 25           |
| Bakersfield                                          | 612,100    | 987,108              | 61           |
| El Centro and others                                 | 214,250    | 977,078              | 356          |
| Blythe                                               | 58,800     | 889,500              | 1,413        |
| CVPM 2                                               | 190,110    | 461,137              | 143          |
| CVPM 3                                               | 42,275     | 125,008              | 196          |
| CVPM 4                                               | 17,565     | 121,927              | 594          |
| CVPM 5                                               | 358,800    | 371,47 <sup>a</sup>  | 4            |
| CVPM 6                                               | 894,299    | 368,680 <sup>a</sup> | -59          |
| CVPM 8                                               | 92,445     | 514,633              | 457          |

 Table 1. Percent population increase from DWR 2020 projection to 2100 projection

| CVPM 9  | 391,700 | 753,932   | 92  |
|---------|---------|-----------|-----|
| CVPM 10 | 150,580 | 350,271   | 133 |
| CVPM 11 | 653,980 | 1,277,364 | 95  |

Table 1. Percent population increase from DWR 2020 projection to 2100 projection (cont.).

| <b>T</b> , <b>1</b> | DWR 2020   |                 | % population |
|---------------------|------------|-----------------|--------------|
| Urban name          | population | 2100 population | increment    |
| CVPM 12             | 297,770    | 727,016         | 144          |
| CVPM 13             | 422,150    | 1,263,670       | 199          |
| CVPM 14             | 69,375     | 97,531          | 41           |
| CVPM 15             | 216,200    | 349,507         | 62           |
| CVPM 17             | 294,210    | 1,060,199       | 260          |
| CVPM 18             | 534,140    | 1,369,290       | 156          |
| CVPM 19             | 41,100     | 95,210          | 132          |
| CVPM 20             | 156,675    | 823,226         | 425          |
| CVPM 21             | 84,150     | 166,539         | 98           |
| Subtotal            | 44,881,273 | 85,560,323      | 91           |
| Total California    | 47,507,399 | 92,081,030      | 94           |

a. Changed with regard to CALVIN 2020 model (DAU originally shared with Yuba and Napa-Solano are transferred fully from CVPM 5 and CVPM 6 demands to Yuba and Napa-Solano, respectively).

|        |                                  |                                           | 2020           | 2100      |                                                                                                                    |
|--------|----------------------------------|-------------------------------------------|----------------|-----------|--------------------------------------------------------------------------------------------------------------------|
|        | CALVIN node                      |                                           | demand         | demand    | Description of major cities,                                                                                       |
| #      | name                             | DAUs included                             | TAF/year       | TAF/year  | agencies, or associations                                                                                          |
| 20     | Yuba City and others             | 159, 168                                  | 63.83          | 116.33    | Oroville, Yuba City                                                                                                |
| 30     | Sacramento Area                  | 172, 173, 158,<br>161, 186                | 678.51         | 1,061     | Sacramento Water Forum, Isleton,<br>Rio Vista, PCWA, EID,<br>W. Sacramento, N. Auburn                              |
| 50     | Napa-Solano                      | 191, 40, 41                               | 148.8          | 260.50    | Cities of Napa and Solano<br>Counties                                                                              |
| 60     | Contra Costa WD                  | 192, 70% of 46                            | 134.80         | 145.60    | Contra Costa Water District                                                                                        |
| 70     | EBMUD                            | 70% of 47, 30%<br>of 46                   | 297.30         | 352.30    | East Bay Municipal Utility District                                                                                |
| 80     | SFPUC                            | 43                                        | 238.01         | 264.50    | San Francisco PUC City and<br>County and San Mateo County<br>service areas not in node 90                          |
| 90     | SCV                              | 44, 45, 62, 30%<br>of 47                  | 657.70         | 927.90    | Santa Clara Valley, Alameda<br>County and Alameda Zone 7 WD                                                        |
| 110    | Santa Barbara-San<br>Luis Obispo | 67, 68, 71, 74,<br>75                     | 139.20         | 268.70    | Central Coast Water Authority                                                                                      |
| 130    | Castaic Lake                     | 83                                        | 176.58         | 263.40    | Castaic Lake Water Agency                                                                                          |
| 140    | SBV                              | 44% of 100                                | 282.52         | 285.10    | San Bernardino Valley Water<br>District                                                                            |
| 150    | Central MWD                      | 87, 89, 90, 92,<br>96, 114, 56% of<br>100 | 3,730.70       | 3,898.8   | Mainly Los Angeles and Orange<br>County portions of Metropolitan<br>Water District of Southern<br>California (MWD) |
| 170    | Eastern & Western<br>MWD         | 98, 104, 110                              | 740.04         | 1,245.7   | Mainly Riverside County portion of MWD                                                                             |
| 190    | Antelope Valley<br>Area          | SL3, SL4                                  | 283.30         | 420.4     | AVEKWA, Palmdale, Littlerock<br>Creek                                                                              |
| 200    | Mojave River                     | SL5, CR1                                  | 354.90         | 1,396.97  | Mojave Water Agency and Hi<br>Desert Water Agency                                                                  |
| 210    | Coachella Valley                 | CR4 (348, 349)                            | 600.73         | 2,078.54  | Dessert Water Agency, Coachella<br>Valley Water Agency                                                             |
| 230    | San Diego MWD <sup>a</sup>       | 120 + CR5                                 | 988.12         | 1,660.04  | all of San Diego County                                                                                            |
| 240    | Stockton                         | 182                                       | 94.90          | 176.40    | City of Stockton                                                                                                   |
| 250    | Fresno                           | 233                                       | 383.74         | 446.80    | Cities of Fresno and Clovis                                                                                        |
| 260    | Bakersfield                      | 254                                       | 260.50         | 382.20    | City of Bakersfield                                                                                                |
|        | Total                            |                                           | 10,254         | 15,535    |                                                                                                                    |
| a. Are | ea expanded from 2020            | CALVIN represe                            | ntation to inc | lude CR5. |                                                                                                                    |

Table 2. Existing economically represented urban demand areas in CALVIN.

|        |                                |                  | 2020               |                         |                                                        |
|--------|--------------------------------|------------------|--------------------|-------------------------|--------------------------------------------------------|
| #      | CALVIN node<br>name            | DAUs<br>included | demand<br>TAF/year | 2100 demand<br>TAF/year | Description of major cities, agencies, or associations |
| 10     | Redding                        | 141, 143         | 79.4               | 145.6                   | Redding                                                |
| 120    | Ventura                        | 81               | 218.8              | 367.5                   | Oxnard (Camarillo, Ventura)                            |
| 270    | El Centro and others           | all CR6          | 51.8               | 205.5                   | El Centro, Calexico, Brawley                           |
| 280    | Blythe and others <sup>a</sup> | CR2, CR3         | -                  | 239.9                   | Blythe, Needles                                        |
| 308    | CVPM 8 Urban                   | 180, 181,184     | 26.4               | 134.3                   | Galt                                                   |
| 311    | CVPM 11 Urban                  | 205,206,207      | 231.7              | 379.19                  | Modesto, Manteca                                       |
| 312    | CVPM 12 Urban                  | 208, 209         | 109.6              | 292.3                   | Turlock, Ceres                                         |
| 313    | CVPM 13 Urban                  | 210-215          | 160.8              | 411.9                   | Merced, Madera                                         |
| 317    | CVPM 17 Urban                  | 236, 239, 240    | 85.0               | 255.5                   | Sanger, Selma, Reedley, Dinuba                         |
| 318    | CVPM 18 Urban                  | 242, 243         | 147.1              | 347.4                   | Visalia, Tulare                                        |
| 320    | CVPM 20 Urban                  | 256, 257         | 53.9               | 269.7                   | Delano, Wasco                                          |
|        | Total                          |                  | 1,164.5            | 3,048.8                 |                                                        |
| a. Exc | luded urban demand in          | 2020 CALVIN      | model.             |                         |                                                        |

Table 3. New 2100 economically represented urban demand areas in CALVIN.

| Calvin<br>node<br>no. | Calvin node<br>name  | DAUs | Populati<br>on<br>1997 | Populatio<br>n<br>2100 | Change in<br>population<br>1998-2100 | Main<br>growth<br>center<br>(city) | Current<br>supply <sup>a</sup> | Increase in<br>urban land<br>2020-2100<br>(ha) | Reduction in<br>agricultural<br>land 2020-2100<br>(hectares) | Reduction in<br>agricultural<br>water<br>(TAF/y) | Possible<br>new<br>sources |
|-----------------------|----------------------|------|------------------------|------------------------|--------------------------------------|------------------------------------|--------------------------------|------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|----------------------------|
| 10                    | Redding <sup>a</sup> | 141  | 62,775                 | 146,581                | 83,806                               | Redding                            | 70% SW-<br>30% GW              | Not available                                  | ł                                                            | -                                                |                            |
| 10                    | Redding              | 143  | 83,930                 | 275,205                | 191,275                              | Redding                            |                                | Not available                                  | -                                                            | -                                                |                            |
| 120                   | Ventura              | 81   | 716,176                | 1,956,007              | 1,239,830                            | Oxnard<br>(Camarillo,<br>Ventura)  | 71% SW;<br>21% GW              | 34,272                                         | -                                                            | -                                                |                            |
| 270                   | El Centro            | CR6  | 139,332                | 977,078                | 837,746                              | El Centro,<br>Calexico,<br>Brawley | 100% SW                        | 38,733                                         | -                                                            | -                                                |                            |
| 280                   | Blythe               | CR2  | 198                    | 307,704                | 307,506                              | Blythe                             |                                | 16,246                                         | -                                                            | -                                                |                            |
| 280                   | Blythe               | CR3  | 29,677                 | 611,671                | 581,994                              |                                    |                                | 24,255                                         | -                                                            | -                                                |                            |
| 308                   | Urban CVPM 8         | 180  | 37,102                 | 485,388                | 448,286                              | Galt                               | 100% GW                        | 7,504                                          | -                                                            | 194                                              |                            |
| 308                   | Urban CVPM 8         | 181  | 10,850                 | 28,741                 | 17,891                               |                                    |                                | Not available                                  | -                                                            |                                                  |                            |
| 308                   | Urban CVPM 8         | 184  | 361                    | 504                    | 143                                  |                                    |                                | 0                                              | -                                                            |                                                  |                            |
| 311                   | Urban CVPM 11        | 205  | 94,511                 | 528,849                | 434,338                              | Manteca                            | 100% GW                        | 13,498                                         | 21,173                                                       | 180                                              |                            |
| 311                   | Urban CVPM 11        | 206  | 229,925                | 743,501                | 513,576                              | Modesto                            | 100% GW                        | 11,119                                         |                                                              |                                                  |                            |
| 311                   | Urban CVPM 11        | 207  | 2,721                  | 5,014                  | 2,293                                |                                    |                                | 6                                              |                                                              |                                                  |                            |
| 312                   | Urban CVPM 12        | 208  | 203,822                | 723,559                | 519,737                              | Turlock,<br>Ceres                  | 100% GW                        | 12,731                                         | 11,131                                                       | 86                                               |                            |
| 312                   | Urban CVPM 12        | 209  | 2,257                  | 3,457                  | 1,200                                |                                    |                                | 0                                              |                                                              |                                                  |                            |
| 313                   | Urban CVPM 13        | 210  | 130,333                | 557,475                | 427,142                              | Merced                             | 100% GW                        | 16,671                                         | 34,671                                                       | 270                                              |                            |
| 313                   | Urban CVPM 13        | 211  | 6,584                  | 20,705                 | 14,121                               |                                    |                                | 695                                            |                                                              |                                                  |                            |
| 313                   | Urban CVPM 13        | 212  | 5,542                  | 110,506                | 104,964                              |                                    |                                | 5,122                                          |                                                              |                                                  |                            |

Table 4. Data for demands with added economic function.

| Calvin<br>node<br>no. | Calvin node<br>name | DAUs     | Populati<br>on<br>1997       | Populatio<br>n<br>2100 | Change in<br>population<br>1998-2100 | Main<br>growth<br>center<br>(city) | Current<br>supply <sup>a</sup> | Increase in<br>urban land<br>2020-2100<br>(ha) | Reduction in<br>agricultural<br>land 2020-2100<br>(hectares) | Reduction in<br>agricultural<br>water<br>(TAF/y) | Possible<br>new<br>sources |
|-----------------------|---------------------|----------|------------------------------|------------------------|--------------------------------------|------------------------------------|--------------------------------|------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|----------------------------|
| 313                   | GW CVP13            | 213      | 48,647                       | 415,809                | 367,162                              | Madera                             | 50% SW,<br>50% GW              | 15,039                                         | 34,671                                                       | 270                                              |                            |
| 313                   | GW CVP13            | 214      | 21,158                       | 147,074                | 125,916                              |                                    |                                | 5,212                                          |                                                              |                                                  |                            |
| 313                   | GW CVP13            | 215      | 1,496                        | 12,101                 | 10,605                               |                                    |                                | 391                                            |                                                              |                                                  |                            |
| 317                   | GW CVP17            | 236      | 88,580                       | 784,570                | 695,989                              | Sanger,<br>Selma                   | 100% GW                        | 33,705                                         | 37,443                                                       | 270                                              |                            |
| 317                   | GW CVP17            | 239      | 53,991                       | 259,800                | 205,809                              | Reedley,<br>Dinuba                 | 100% GW                        | 10,268                                         |                                                              |                                                  |                            |
| 317                   | GW CVP17            | 240      | 9,165                        | 15,829                 | 6,664                                |                                    |                                | 128                                            |                                                              |                                                  |                            |
| 318                   | GW CVP18            | 242      | 222,435                      | 913,651                | 691,216                              | Viaslia,<br>Tulare                 | 100% GW                        | 27,905                                         | 3,076                                                        | 24                                               |                            |
| 318                   | GW CVP18            | 243      | 100,536                      | 455,639                | 355,103                              |                                    |                                | 15,512                                         |                                                              |                                                  |                            |
| 320                   | GW_CVP20            | 256      | 70,973                       | 617,378                | 546,405                              | Delano,<br>Wasco                   | 100% GW                        | 25,701                                         | 24,012                                                       | 177                                              |                            |
| 320                   | GW_CVP20            | 257      | 11,270                       | 205,848                | 194,578                              |                                    |                                | 6,579                                          |                                                              |                                                  |                            |
| a. SW =               | = surface water sur | oply; GW | <sup><i>y</i></sup> = ground | water supply           | у.                                   |                                    |                                |                                                |                                                              |                                                  |                            |

 Table 4. Data for demands with added economic function (cont.)

|                  |                            | 2020<br>demand | 21000<br>demand |
|------------------|----------------------------|----------------|-----------------|
| CALVIN node name | DAUs                       | TAF/year       | TAF/year        |
| Urban CVPM 2     | 142, 144                   | 63.8           | 145.42          |
| Urban CVPM 3     | 163                        | 15.7           | 38.09           |
| Urban CVPM 4     | 164, 165, 167              | 5.24           | 29.75           |
| Urban CVPM 5     | 166, 170, 171 <sup>a</sup> | 112.1          | 77.33           |
| Urban CVPM 6     | $162^{a}$                  | 200.9          | 92.28           |
| Urban CVPM 9     | 185                        | 77.1           | 127.97          |
| Urban CVPM 10    | 216                        | 41.9           | 90.28           |
| Urban CVPM 14    | 244, 245                   | 17.4           | 22.48           |
| Urban CVPM 15    | 235, 241, 246, 237-8       | 63.3           | 89.80           |
| Urban CVPM 19    | 255, 259, 260              | 23.4           | 34.18           |
| Urban CVPM 21    | 258, 261                   | 25.8           | 48.99           |
| Total            |                            | 646.6          | 796.6           |

Table 5. Fixed diversion urban demand areas in CALVIN.

a. Changed with regard to CALVIN 2020 model (DAU originally shared with Yuba and Napa-Solano are transferred fully from CVPM 5 and CVPM 6 demands to Yuba and Napa-Solano, respectively).

| Table 6. Total CALVIN 2020 and 2100 | population and urban water demands. |
|-------------------------------------|-------------------------------------|
|-------------------------------------|-------------------------------------|

|                                    | 2020 projection | 2100 projection | % increase |
|------------------------------------|-----------------|-----------------|------------|
| Population CALVIN                  | 44,881,273      | 85,560,323      | 91         |
| Population California              | 47,507,399      | 92,081,030      | 94         |
| CALVIN urban water demand (maf/yr) | 12.061          | 19.380          | 61         |



Figure 1. 2020 DWR and 2100 Population Projections.



Figure 2. PCU versus Population Density Regression for DAU's in Coastal Areas.

Figure 3. PCU versus Population Density Regression for DAU's in Inland Areas.



Figure 4. Per Capita Water Use comparison.



#### Figure 5. Generation of Urban Water Value Functions for CALVIN.



Figure 6 CALVIN 2020 and 2100 Urban Water Demands.

